Quaternionic Fock space on slice hyperholomorphic functions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Runge Theorem for Slice Hyperholomorphic Functions

In this paper we introduce and study rational slice monogenic functions. After proving a decomposition theorem for such functions, we are able to prove the Runge approximation theorem for slice monogenic functions. We then show how a similar argument can be used to obtain an analogue of the Runge approximation theorem in the slice regular setting.

متن کامل

Extension results for slice regular functions of a quaternionic variable

In this paper we prove a new representation formula for slice regular functions, which shows that the value of a slice regular function f at a point q = x + yI can be recovered by the values of f at the points q + yJ and q + yK for any choice of imaginary units I, J,K. This result allows us to extend the known properties of slice regular functions defined on balls centered on the real axis to a...

متن کامل

Notes on Fock Space

These notes are intended as a fairly self contained explanation of Fock space and various algebras that act on it, including a Clifford algebras, a Weyl algebra, and an affine Kac-Moody algebra. We also discuss how the various algebras are related, and in particular describe the celebrated boson-fermion correspondence. We finish by briefly discussing a deformation of Fock space, which is a repr...

متن کامل

On the Quaternionic Curves in the Semi-Euclidean Space E_4_2

In this study, we investigate the semi-real quaternionic curves in the semi-Euclidean space E_4_2. Firstly, we introduce algebraic properties of semi-real quaternions. Then, we give some characterizations of semi-real quaternionic involute-evolute curves in the semi-Euclidean space E42 . Finally, we give an example illustrated with Mathematica Programme.

متن کامل

Real-linear Operators on Quaternionic Hilbert Space

The main result is that any continuous real-linear operator A on a quaternionic Hubert space has a unique decomposition A=A0+iiAl + izAi+iiA3, where the A„ are continuous linear operators and (fi,f2,'3) is any right-handed orthonormal triad of vector quaternions. Other results concern the place of the colinear and complex-linear operators in this characterisation and the effect on the Av of a r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Filomat

سال: 2020

ISSN: 0354-5180,2406-0933

DOI: 10.2298/fil2004197k